ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
C. Lepscky, G. M. Testa, H. Hougaard, K. W. Jones
Nuclear Technology | Volume 16 | Number 2 | November 1972 | Pages 367-395
Technical Paper | Fuel | doi.org/10.13182/NT72-A31203
Articles are hosted by Taylor and Francis Online.
Two instrumented fuel assemblies, containing Zircaloy-clad UO2 fuel, namely IF A-132 (pellet, 95% TD, 10.0 wt% 235U) and IFA-133 (vibrocompacted powder, 85% TD, 10.0 wt% 235U) were irradiated in the Halden Boiling Water Reactor (HBWR) in Norway, in order to investigate the performance of fuel pins under central melting conditions; the maximum linear heat generation rate (LHGR) was about 1400 W/cm and the final burnup was 11 000 MWd/MTU. The initial molten zone covered about 35 and 65% of the fuel radius for the pelleted and vibrocompacted fuel, respectively. By means of the in-pile instrumentation, the dimensional changes vs generated power were recorded during irradiation. Furthermore through extensive postirradiation examinations the in-pile behavior of fuel and cladding was evaluated. In spite of incipient burnout condition, contact of molten or plastic fuel with the cladding, and localized overheating up to 900°C, the overall behavior gave no indication that irradiation to a higher burnup could not proceed satisfactorily. On the basis of this experiment it seems justified to assume that central fuel melting should not be considered as a primary constraint in the fuel design criteria.