ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
C. Lepscky, G. M. Testa, H. Hougaard, K. W. Jones
Nuclear Technology | Volume 16 | Number 2 | November 1972 | Pages 367-395
Technical Paper | Fuel | doi.org/10.13182/NT72-A31203
Articles are hosted by Taylor and Francis Online.
Two instrumented fuel assemblies, containing Zircaloy-clad UO2 fuel, namely IF A-132 (pellet, 95% TD, 10.0 wt% 235U) and IFA-133 (vibrocompacted powder, 85% TD, 10.0 wt% 235U) were irradiated in the Halden Boiling Water Reactor (HBWR) in Norway, in order to investigate the performance of fuel pins under central melting conditions; the maximum linear heat generation rate (LHGR) was about 1400 W/cm and the final burnup was 11 000 MWd/MTU. The initial molten zone covered about 35 and 65% of the fuel radius for the pelleted and vibrocompacted fuel, respectively. By means of the in-pile instrumentation, the dimensional changes vs generated power were recorded during irradiation. Furthermore through extensive postirradiation examinations the in-pile behavior of fuel and cladding was evaluated. In spite of incipient burnout condition, contact of molten or plastic fuel with the cladding, and localized overheating up to 900°C, the overall behavior gave no indication that irradiation to a higher burnup could not proceed satisfactorily. On the basis of this experiment it seems justified to assume that central fuel melting should not be considered as a primary constraint in the fuel design criteria.