ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Bruce A. Robinson, Ned Z. Elkins, Joe T. Carter
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 122-138
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT12-A14524
Articles are hosted by Taylor and Francis Online.
With the United States rethinking its strategy for the management and disposal of defense high-level radioactive waste and civilian used nuclear fuel (UNF), it is an opportune time to evaluate the near-term and long-term options and requirements for the U.S. geologic repository program. In this paper, we outline a research program investigating the behavior of salt when subjected to thermal loads like those that would be present in a high-level-waste (HLW) repository. This program builds upon the knowledge base developed as a result of previous repository program efforts and the successful licensing and operation of the Waste Isolation Pilot Project Transuranic waste repository. We present a preliminary evaluation of a conceptual repository design that, in principle, exploits the positive attributes of salt as a disposal medium while balancing heat management issues against other considerations such as efficiency of disposal operations and cost. The coupled thermal-mechanical behavior of the intact and crushed salt, which influences and is influenced by the liberation and movement of water present in the salt and hydrous minerals, will ultimately control the thermal and hydrochemical conditions in the repository and at the waste package. To address key scientific issues, we advocate a combination of laboratory-scale investigations, a thermal test in the field for a configuration that replicates a small portion of our conceptual repository design, and numerical simulations conducted to develop a validated model that can be used for future repository design or performance assessment purposes. Accompanying this testing program would be a broader set of investigations that we advocate be conducted in the context of an iterative and adaptive process for systematically reducing uncertainties as we build a science-based safety case for HLW disposal in salt.