ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
M. J. Driscoll, R. K. Lester, K. G. Jensen, B. W. Arnold, P. N. Swift, P. V. Brady
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 111-121
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT12-A14523
Articles are hosted by Taylor and Francis Online.
The use of deep boreholes for the disposal of high-level radioactive waste is reassessed, emphasizing key enabling technical features and their strong linkage to national and international fuel cycle policy. Emplacement 2 to 4 km deep in widely available granitic continental bedrock, under a 1-km caprock layer of high-integrity bedrock, is shown in this analysis to have the potential to provide sufficiently low host rock permeability to prevent radionuclide escape by transport in water - the only plausible release mechanism. The modular nature of the concept enables multiregion siting in large user countries and is especially well-suited for small-user nations. Irretrievability can be built-in to better meet safeguards objectives, and the exceptionally high assurance of confinement makes the disposal of minor actinides (and troublesome fission products) an attractive alternative to their destruction by transmutation.