ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Cavendish/Amentum JV win Monju D&D contract
U.K.-based Cavendish Nuclear, a subsidiary of Babcock International, will work with Amentum on the next phase of work supporting the decommissioning of Japan’s Monju prototype fast reactor under a contract awarded by the Japan Atomic Energy Agency.
Takashi Kodama, Masanao Nakano, Kunio Fujita, Shingo Matsuoka, Yasuo Ito, Chihiro Matsuura, Hirotsugu Shiraishi, Yousuke Katsumura
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 103-110
Technical Paper | Reprocessing | doi.org/10.13182/NT11-45
Articles are hosted by Taylor and Francis Online.
Simulated high-level liquid waste was irradiated by 60Co gamma radiation, and changes in the gas-phase concentrations of the products H2, O2, and NOx that accumulated in the absence of sweeping air were measured. The H2 concentration reached a steady-state value of much less than 4% in line with the value predicted from the previously derived mathematical expression. The simulated dissolver solution was also irradiated, and another steady-state H2 concentration of much less than 4% was obtained in accordance with the corresponding predicted value. These experimental results lend strong support for the applicability of a mathematical expression in predicting the H2 concentration in a tank in the case of a sweeping-air function loss.