ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
B. S. Sandhu
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 118-123
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12279
Articles are hosted by Taylor and Francis Online.
The objective of this work is to present a method/technique for the determination of the effective atomic number (Zeff) of composite materials [mixed materials of many atomic numbers (Z's)]. In the present measurements, an intense beam of gamma-ray photons irradiates targets of different elements and composite materials and of varying thicknesses. The scattered radiations are detected by a properly shielded NaI(Tl) scintillation detector whose response unfolding, converting the observed pulse-height distribution to a true photon spectrum, is obtained with the help of an inverse matrix approach. This also results in the extraction of the numbers of multiple-scattered events from the thick targets. We observe that the numbers of multiple-scattered events, having the same energy as in single-scattered distribution, increase with an increase in target thickness and then saturate for a particular target thickness known as saturation thickness (depth). The saturation thickness is found to decrease when the Z of pure elements increases. A calibration curve (saturation depth versus Z of pure elements) and the measured saturation thickness values for composite materials are used to assign the respective Zeff values of these composite materials. Monte Carlo calculations also support the present experimental results.