ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
B. S. Sandhu
Nuclear Technology | Volume 175 | Number 1 | July 2011 | Pages 118-123
Technical Paper | Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Measurements and General Instrumentation | doi.org/10.13182/NT11-A12279
Articles are hosted by Taylor and Francis Online.
The objective of this work is to present a method/technique for the determination of the effective atomic number (Zeff) of composite materials [mixed materials of many atomic numbers (Z's)]. In the present measurements, an intense beam of gamma-ray photons irradiates targets of different elements and composite materials and of varying thicknesses. The scattered radiations are detected by a properly shielded NaI(Tl) scintillation detector whose response unfolding, converting the observed pulse-height distribution to a true photon spectrum, is obtained with the help of an inverse matrix approach. This also results in the extraction of the numbers of multiple-scattered events from the thick targets. We observe that the numbers of multiple-scattered events, having the same energy as in single-scattered distribution, increase with an increase in target thickness and then saturate for a particular target thickness known as saturation thickness (depth). The saturation thickness is found to decrease when the Z of pure elements increases. A calibration curve (saturation depth versus Z of pure elements) and the measured saturation thickness values for composite materials are used to assign the respective Zeff values of these composite materials. Monte Carlo calculations also support the present experimental results.