ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
F. Fernex, T. Ivanova, F. Bernard, E. Latang, P. Fouillaud, J. F. Thro
Nuclear Science and Engineering | Volume 162 | Number 1 | May 2009 | Pages 1-24
Technical Paper | doi.org/10.13182/NSE07-52
Articles are hosted by Taylor and Francis Online.
In the 1980s a series of the Haut Taux de Combustion (HTC) critical experiments with fuel pins in a water-moderated lattice was conducted at the Apparatus B experimental facility in Valduc (Commissariat à l'Energie Atomique, France) with the support of the Institut de Radioprotection et de Sûreté Nucléaire and AREVA NC. Four series of experiments were designed to assess profit associated with actinide-only burnup credit in the criticality safety evaluation for fuel handling, pool storage, and spent-fuel cask conditions. The HTC rods, specifically fabricated for the experiments, simulated typical pressurized water reactor uranium oxide spent fuel that had an initial enrichment of 4.5 wt% 235U and was burned to 37.5 GWd/tonne U.The configurations have been modeled with the CRISTAL criticality package and SCALE 5.1 code system. Sensitivity/uncertainty analysis has been employed to evaluate the HTC experiments and to study their applicability for validation of burnup credit calculations. This paper presents the experimental program, the principal results of the experiment evaluation, and modeling. The HTC data applicability to burnup credit validation is demonstrated with an example of spent-fuel storage models.