ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Mohamed Elhareef, Youssef Abouhussien, Zeyun Wu, Massimiliano Fratoni, Eva Davidson, Tingzhou Fei, Kurt Harris
Nuclear Science and Engineering | Volume 199 | Number 12 | December 2025 | Pages 2143-2171
Regular Research Article | doi.org/10.1080/00295639.2025.2475650
Articles are hosted by Taylor and Francis Online.
The molten salt reactor is one candidate among the Generation IV nuclear reactor designs, with its deployment relying on advanced computational tools to capture the unique behavior of the circulating fuel system. The Molten Salt Reactor Experiment (MSRE) provides valuable experimental data for validating these computational tools. This work develops a reactor transient benchmark based on the MSRE pump transient tests.
Two computational models are evaluated in the benchmark: a simplified one-dimensional (1D) system-level model and a more detailed R-Z axisymmetric model using the porous medium approximation. The models are used to evaluate the impact of spatial resolution on predicted reactivity responses during the transient. Several impactful factors are examined during the benchmark evaluation, including the neutron diffusion multigroup energy structure, delayed neutron precursor (DNP) diffusion, DNP group structure, bypass flow, and transient flow rates.
The reactivity predictions using the computational models are compared to the experimental data. The mean errors in the predicted reactivity responses ranged from 11 to 21 pcm (1 pcm = 10−5) for the pump startup transient and 5 to 13 pcm for the pump coastdown transient. These results indicate that the 1D model can provide adequate accuracy on MSRE pump transients with limitations in predicting the rate of reactivity at the early stage of the transient, while the higher-order model improves this capability by incorporating the influence of radial salt flow distribution and bypass flow on transient reactivity.