ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Victor Viallon, Elias Y. Garcia Cervantes, Laurent Buiron
Nuclear Science and Engineering | Volume 199 | Number 12 | December 2025 | Pages 2037-2054
Research Article | doi.org/10.1080/00295639.2025.2534304
Articles are hosted by Taylor and Francis Online.
Uncertainty quantification of neutronics quantities of interest during irradiation needs to be based on reliable sensitivities that are able to correctly describe the fuel depletion and the impact of the input data. The classical approach with the Standard Perturbation Theory (SPT) is not sufficient to obtain sensitivity for the entire set of nuclear data involved in the reactivity loss phenomenon. Recent developments in the APOLLO3® code package allow computing Boltzmann/Bateman coupling at the sensitivity scale with the Depletion Perturbation Theory. This improved functionality helps in quantifying contributions from all nuclear data involved in the depletion process: cross-sections, fission yields, and KERMA, among others. However, its applicability in the case of “real” reactor context often requires restricting the calculation to a single cycle, thus forgetting information from the previous irradiation cycles due to complex reloading patterns that takes place in between. To address this challenge, approximations based on a restricted irradiation history can be employed. This paper demonstrates that the corresponding “partial” sensitivities effectively replicate the global behavior of the reference sensitivities for the majority of nuclear reactions when compared to SPT sensitivities. However, they also result in a significant overestimation of the sensitivity norm for the main heavy-nuclei cross-sections as the unconsidered irradiation time increases. The impact of this bias on reactivity loss uncertainty is quantified, and the primary affected contributors are highlighted.