ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Michael D. Muhlheim, Pradeep Ramuhalli, Askin Guler Yigitoglu, Alex Huning, Richard Wood, Jorge L. Narvaez, Abhinav Saxena
Nuclear Science and Engineering | Volume 199 | Number 11 | November 2025 | Pages 1899-1914
Research Article | doi.org/10.1080/00295639.2025.2471724
Articles are hosted by Taylor and Francis Online.
A digital twin (DT) is a digital model or a collection of models of a physical entity. DTs in the nuclear arena can be used from plant design through decommissioning. Decisions are typically a priori or made offline. Risk-informed decision making is identifying what can go wrong, its frequency, and the consequences of its failure. Ideally risk-informed decision making reflects the current state of the plant and provides a decision in real time.
Traditionally, probabilistic risk assessments (PRAs) evaluate the failures of safety systems, the risk of core damage, and the offsite dose as the consequence. However, this DT evaluates the decisions on the control side rather than the protection side. It uses the same risk methods to probabilistically inform the decision-making process but in a different way. Rather than evaluating the risk of core damage, this DT evaluates the likelihood of avoiding a trip set point while maintaining plant safety.
Performance-based assessments are identified via its probabilistic evaluation of operational alternatives based on system status. Because the purpose of the control system is to maintain system variables within prescribed operating ranges, upsets or challenges that can exceed a trip set point resulting in a plant transient and a challenge to plant mitigating systems based on actual plant conditions, are evaluated to safely maintain the plant within the operating ranges.
The probabilistic portion of the model is autonomously and automatically adjusted, and the metric of interest (i.e. likelihood of avoiding a trip set point) is recalculated. The digital representation of the physical system (i.e. the DT) performs a deterministic performance–based assessment of the probabilistically identified alternatives identified to validate the probabilistic assessment. A decision-making algorithm selects the appropriate option based on the probabilistic and deterministic assessments and transmits a control signal to a component(s) to initiate a corrective action or informs an operator of its decision.