ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Ilyas Yilgor, Shanbin Shi
Nuclear Science and Engineering | Volume 199 | Number 10 | October 2025 | Pages 1691-1711
Research Article | doi.org/10.1080/00295639.2024.2411169
Articles are hosted by Taylor and Francis Online.
Due to their safety, efficiency, and passive operation, heat pipes have found diverse applications that include nuclear microreactors. Heat pipes enable increased reliability in microreactors, as they eliminate the need for reactor coolant pumps and their associated auxiliary systems while resulting in a greatly reduced spatial footprint. Experimental work is needed to support and expedite the design and licensing of heat pipe microreactors, especially the validation of heat pipe performance, as key heat transfer components.
The present work develops a comprehensive heat pipe experimental database covering a wide range of heat pipe operating conditions. In addition, two-phase thermosyphon experiments are conducted to serve as a benchmark for performance. The operating conditions are determined based on previously developed scaling laws for heat pipes and two-phase thermosyphons using low-temperature working fluids. The tested heat pipe is about 2 m long and equipped with in-house-developed annulus screen wicks.
To allow for the investigation of heat pipe flow dynamics, various instruments are incorporated to acquire heat pipe pressures, pressure drops, and temperatures. In particular, a fiberoptic sensor is implemented to measure temperatures along the centerline of the entire heat pipe. The results can be directly applied to the advancement of numerical tools currently under development for heat pipe microreactor analysis.