This study explores data-driven prognostics for nuclear power plant (NPP) condensers, focusing on tube fouling. We utilized the Asherah nuclear power plant simulator (ANS) to compare four methods: Random Forest (RF), Support Vector Regressor (SVR), Fully Connected Neural Network (FCNN), and Long Short-Term Memory Neural Network (LSTM). By simulating various fouling scenarios in the ANS, we generated data with different degradation rates under transient operations. The models were trained and tested on these data, with performance evaluated visually and numerically including uncertainty assessment. The LSTM model excelled, exhibiting minimal prediction noise and the most accurate remaining useful life estimates across all degradation levels. Its ability to capture long-term dependencies and produce cleaner outputs makes it a strong candidate, although accurate training data across the entire component lifespan are crucial. The RF model emerged as a robust alternative, providing reliable predictions with high confidence. The FCNN and SVR models, while less effective overall, showed potential under specific conditions. FCNN offers a less complex alternative to LSTM and might benefit from larger datasets. SVR excels in precision when the quality of the training data is high. This study highlights the operational benefits of advanced prognostics in the energy sector and emphasizes the need for further research in NPP condenser health management through real-life experiments.