ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Sungmoon Joo
Nuclear Science and Engineering | Volume 199 | Number 8 | August 2025 | Pages 1325-1336
Research Article | doi.org/10.1080/00295639.2024.2340171
Articles are hosted by Taylor and Francis Online.
This study introduces a novel framework for the robotic decommissioning of nuclear facilities, that focuses on object classification and six degrees of freedom pose estimation from partial-view three-dimensional (3-D) scan data. Addressing the challenge of precise robotic manipulation in environments where acquiring full-scan data is impractical, this framework leverages a deep neural network for initial pose estimation, subsequently refined by a modified iterative closest point algorithm. Our method demonstrates high accuracy in identifying scanned objects and estimating their poses from partial-view scans, validated through experiments with 3-D printed mock-ups. This advancement highlights the potential for significantly enhancing robotic automation in nuclear decommissioning and related fields.