ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Sungmoon Joo
Nuclear Science and Engineering | Volume 199 | Number 8 | August 2025 | Pages 1325-1336
Research Article | doi.org/10.1080/00295639.2024.2340171
Articles are hosted by Taylor and Francis Online.
This study introduces a novel framework for the robotic decommissioning of nuclear facilities, that focuses on object classification and six degrees of freedom pose estimation from partial-view three-dimensional (3-D) scan data. Addressing the challenge of precise robotic manipulation in environments where acquiring full-scan data is impractical, this framework leverages a deep neural network for initial pose estimation, subsequently refined by a modified iterative closest point algorithm. Our method demonstrates high accuracy in identifying scanned objects and estimating their poses from partial-view scans, validated through experiments with 3-D printed mock-ups. This advancement highlights the potential for significantly enhancing robotic automation in nuclear decommissioning and related fields.