ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Mohammed Boufenar, Djemai Merrouche
Nuclear Science and Engineering | Volume 199 | Number 7 | July 2025 | Pages 1181-1200
Research Article | doi.org/10.1080/00295639.2024.2434389
Articles are hosted by Taylor and Francis Online.
In most cases of probabilistic safety assessment model quantification, the minimal cut set (MCS) generation technique is effective and fully sufficient. But as the number of high probability events increases, e.g. due to seismic risk assessments, more accurate methods may be necessary to compensate for the overestimation of the core damage frequency resulting from using MCS methods. Furthermore, in some applications, a relevant numerical treatment of dependencies and success in sequence analysis in noncoherent fault trees may also be required to avoid overly conservative results.
To mitigate these issues, this work introduces the binary decision diagram (BDD) method for calculating the exact top event probability. BDD efficiently captures and processes complex Boolean relationships within a fault tree, allowing for more accurate system reliability evaluations. The BDD method is highlighted for its ability to handle dependencies and success branches more accurately than the MCS approach.
This study demonstrates the feasibility and effectiveness of using BDD within the seismic probabilistic safety assessment of a nuclear research reactor. The results suggest that the utilization of this method provides reasonable assurance, allowing for robust decision making regarding real-time risk status with confidence.