ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
High-temperature plumbing and advanced reactors
The use of nuclear fission power and its role in impacting climate change is hotly debated. Fission advocates argue that short-term solutions would involve the rapid deployment of Gen III+ nuclear reactors, like Vogtle-3 and -4, while long-term climate change impact would rely on the creation and implementation of Gen IV reactors, “inherently safe” reactors that use passive laws of physics and chemistry rather than active controls such as valves and pumps to operate safely. While Gen IV reactors vary in many ways, one thing unites nearly all of them: the use of exotic, high-temperature coolants. These fluids, like molten salts and liquid metals, can enable reactor engineers to design much safer nuclear reactors—ultimately because the boiling point of each fluid is extremely high. Fluids that remain liquid over large temperature ranges can provide good heat transfer through many demanding conditions, all with minimal pressurization. Although the most apparent use for these fluids is advanced fission power, they have the potential to be applied to other power generation sources such as fusion, thermal storage, solar, or high-temperature process heat.1–3
Shen Zhang, Nan Gui, Xingtuan Yang
Nuclear Science and Engineering | Volume 199 | Number 7 | July 2025 | Pages 1073-1090
Research Article | doi.org/10.1080/00295639.2024.2437937
Articles are hosted by Taylor and Francis Online.
Nuclear reactions generate large temperature differences in materials, causing change in the density of the materials. An uneven density distribution means the macroscopic cross section will change in spatial locations, even within the same material. This scenario makes the neutron transport calculation difficult. However, this issue can be solved by developing an algorithm for neutron transport in volume meshes that stores data about how the medium density changes with space and tracks the neutron in barycentric coordinates.
This study proposes such a novel method by incorporating the barycentric particle tracking algorithm into Monte Carlo transport within volume meshes. The method involves the introduction of face search algorithms, particle-face distance calculation algorithms, and the resolution of compatibility between the distance algorithm and the tracking algorithm. Consequently, the computational results and evaluations performed by our code and the OpenMC code across diverse geometric configurations and enrichments exhibit a noteworthy degree of consistency. The discrepancies in the simulation results between the two codes are all within ±3σ. Therefore, the algorithm’s correctness is affirmed. Moreover, the computational time of the current method displays a logarithmic function–like relationship with the number of meshes, which means the computational performance is highly efficient and desirable.
Finally, the application of the current model in some irregular geometries and geometries with varied temperature distributions is demonstrated. The results prove that the Monte Carlo particle transport method can also be directly applied to these situations. All of this illustrates the future ability of the current method to calculate neutron transport in reactors of extremely nonuniformly distributed physical fields and irregular geometry at relatively tiny geometric scales.