ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
François Martin, André Bergeron, Guillaume Campioni, Yannick Gorsse, Nathan Greiner, Elsa Merle
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S994-S1005
Research Article | doi.org/10.1080/00295639.2024.2328964
Articles are hosted by Taylor and Francis Online.
The CEA multiphysics tool combining the deterministic neutronics code APOLLO3® and the computational fluid dynamics (CFD) platform TRUST/TrioCFD is used to model the first-ever-built molten salt nuclear reactor, the Aircraft Reactor Experiment (ARE). A neutronics model and a thermal-hydraulic model of the reactor were created and coupled. Steady-state and transient simulations were performed in order to reproduce experiments realized on the ARE. The simulation results and experimental data are compared as a way of validating the multiphysics tool. The nominal state of the ARE is reproduced first; significant discrepancies were observed regarding the liquid sodium flow. Variations of βeff with the fuel flow rate were then studied. While the simulation was in very good agreement with the experimental data for high flow rates, some discrepancies were observed at low and null flow rates. Finally, a transient simulation of a rod withdrawal was reproduced. While the beginning of the transient simulation was in good agreement with the experimental data, oscillations appeared in the second half of the simulation.