ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
François Martin, André Bergeron, Guillaume Campioni, Yannick Gorsse, Nathan Greiner, Elsa Merle
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S994-S1005
Research Article | doi.org/10.1080/00295639.2024.2328964
Articles are hosted by Taylor and Francis Online.
The CEA multiphysics tool combining the deterministic neutronics code APOLLO3® and the computational fluid dynamics (CFD) platform TRUST/TrioCFD is used to model the first-ever-built molten salt nuclear reactor, the Aircraft Reactor Experiment (ARE). A neutronics model and a thermal-hydraulic model of the reactor were created and coupled. Steady-state and transient simulations were performed in order to reproduce experiments realized on the ARE. The simulation results and experimental data are compared as a way of validating the multiphysics tool. The nominal state of the ARE is reproduced first; significant discrepancies were observed regarding the liquid sodium flow. Variations of βeff with the fuel flow rate were then studied. While the simulation was in very good agreement with the experimental data for high flow rates, some discrepancies were observed at low and null flow rates. Finally, a transient simulation of a rod withdrawal was reproduced. While the beginning of the transient simulation was in good agreement with the experimental data, oscillations appeared in the second half of the simulation.