ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Jeong-Hyeon Eom, Gi-Young Tak, In-Sik Ra, Ji-Won Choi, Hae-Yong Jeong
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S923-S940
Research Article | doi.org/10.1080/00295639.2025.2456373
Articles are hosted by Taylor and Francis Online.
The occurrence of a steam explosion resulting from fuel coolant interaction poses a significant threat to the integrity of nuclear power plants when extremely high-temperature molten corium is released into the preflooded reactor cavity. The present study establishes and verifies a computational fluid dynamics (CFD) model by simulating the TROI steam explosion experiment.
The suggested model uses the Lagrangian method to simulate particles and adopts a secondary breakup model by which the particles are fragmented based on the critical Weber number. The increased number of fine particles, surface area growth, and the propagation of the explosion pressure wave following the triggering of the steam explosion are effectively simulated with the established model. The formation of steam flow and the subsequent breakup of particles are basically governed by the heat transfer between the corium particles and the cooling fluids. The mass distribution of particle sizes after breakup is obtained by modifying the main terms of the error function, which determines the diameter of child particles to be comparable with experimentally measured distributions.
With this modeling, the maximum pressure obtained by the simulation approaches the measured peak pressure. This suggests that the established CFD model is successful in describing the overall thermal-hydraulic phenomena during a steam explosion. In the future, the steam explosion CFD model will be further enhanced to obtain a more sophisticated model to minimize the uncertainty in steam explosion predictions.