ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Jeong-Hyeon Eom, Gi-Young Tak, In-Sik Ra, Ji-Won Choi, Hae-Yong Jeong
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S923-S940
Research Article | doi.org/10.1080/00295639.2025.2456373
Articles are hosted by Taylor and Francis Online.
The occurrence of a steam explosion resulting from fuel coolant interaction poses a significant threat to the integrity of nuclear power plants when extremely high-temperature molten corium is released into the preflooded reactor cavity. The present study establishes and verifies a computational fluid dynamics (CFD) model by simulating the TROI steam explosion experiment.
The suggested model uses the Lagrangian method to simulate particles and adopts a secondary breakup model by which the particles are fragmented based on the critical Weber number. The increased number of fine particles, surface area growth, and the propagation of the explosion pressure wave following the triggering of the steam explosion are effectively simulated with the established model. The formation of steam flow and the subsequent breakup of particles are basically governed by the heat transfer between the corium particles and the cooling fluids. The mass distribution of particle sizes after breakup is obtained by modifying the main terms of the error function, which determines the diameter of child particles to be comparable with experimentally measured distributions.
With this modeling, the maximum pressure obtained by the simulation approaches the measured peak pressure. This suggests that the established CFD model is successful in describing the overall thermal-hydraulic phenomena during a steam explosion. In the future, the steam explosion CFD model will be further enhanced to obtain a more sophisticated model to minimize the uncertainty in steam explosion predictions.