ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Maximiliano Dalinger, William Walters
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S754-S764
Research Article | doi.org/10.1080/00295639.2024.2328944
Articles are hosted by Taylor and Francis Online.
Monte Carlo codes are the most accurate way to solve the neutronics in a reactor core but can be computationally expensive, especially for when feedback effects are considered or for transient calculations. In this paper, we use the fission matrix (FM) method to perform static and transient calculations with point-kinetics equations and a quasi-static model for an adiabatic transient with feedback. This was applied to a three-dimensional model of the Transient Reactor Test Facility (TREAT) experimental reactor using the Monte Carlo code Serpent for reference calculations and to generate fission matrix databases (FMDBs). In previous works, FMDBs were generated with uniform fuel temperature profiles. Here, we analyze the use of FMDBs with nonuniform temperature profiles, for static and transient calculations. For static calculations, comparison between Serpent and the FM method using nonuniform and uniform FMDBs showed maximum differences in multiplication factors of 57.0 and 77.9 pcm, respectively. For the fission source distribution, comparisons showed maximum root-mean-square differences of 1.10% and 4.89% for nonuniform and uniform FMDBs, respectively. Similar results were obtained when using homogenized databases. Therefore, using nonuniform FMDBs produces a better approximation than uniform databases. For transient calculations, comparisons between both database sets showed differences of 0.9% and −1.8% for the peak and final total power.