ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Maximiliano Dalinger, William Walters
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S754-S764
Research Article | doi.org/10.1080/00295639.2024.2328944
Articles are hosted by Taylor and Francis Online.
Monte Carlo codes are the most accurate way to solve the neutronics in a reactor core but can be computationally expensive, especially for when feedback effects are considered or for transient calculations. In this paper, we use the fission matrix (FM) method to perform static and transient calculations with point-kinetics equations and a quasi-static model for an adiabatic transient with feedback. This was applied to a three-dimensional model of the Transient Reactor Test Facility (TREAT) experimental reactor using the Monte Carlo code Serpent for reference calculations and to generate fission matrix databases (FMDBs). In previous works, FMDBs were generated with uniform fuel temperature profiles. Here, we analyze the use of FMDBs with nonuniform temperature profiles, for static and transient calculations. For static calculations, comparison between Serpent and the FM method using nonuniform and uniform FMDBs showed maximum differences in multiplication factors of 57.0 and 77.9 pcm, respectively. For the fission source distribution, comparisons showed maximum root-mean-square differences of 1.10% and 4.89% for nonuniform and uniform FMDBs, respectively. Similar results were obtained when using homogenized databases. Therefore, using nonuniform FMDBs produces a better approximation than uniform databases. For transient calculations, comparisons between both database sets showed differences of 0.9% and −1.8% for the peak and final total power.