ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Julia Niedermeier, Maik Stuke
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S697-S709
Research Article | doi.org/10.1080/00295639.2024.2340142
Articles are hosted by Taylor and Francis Online.
Using cosmic muons allows for a noninvasive imaging approach to examine nuclear fuel in sealed dry storage casks. By assessing muons both before and after passing through the cask, one can infer details about the cask’s interior by analyzing scattering angle data. The effective scattering angles of muons depend on the characteristics of the interacting material, such as the atomic number (Z). This allows for the deduction of the material and geometric composition of the cask’s inventory. When employing simulations to forecast muon paths within the cask, it is essential to scrutinize the impact of modeling assumptions and simplifications on the scattering angle distribution.
In this study, we examine the influence of modeling assumptions and simplifications on the effective scattering angle. Additionally, the significance of the number of particles used is shown. We evaluate four GEANT4 cask models of a CASTOR® V/19, each incorporating varying degrees of simplification, and analyze their impact on the projected muon scattering angle. These simplifications include both the simplification of individual geometric components of the cask and the complete exclusion of specific components. We assess and prioritize the various model simplifications in terms of their effect on the observed scattering angle. We recognize the importance of thoughtfully considering the degree of simplification used in the model to ensure accurate and reliable results for the scattering angle distribution.