ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Julia Niedermeier, Maik Stuke
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S697-S709
Research Article | doi.org/10.1080/00295639.2024.2340142
Articles are hosted by Taylor and Francis Online.
Using cosmic muons allows for a noninvasive imaging approach to examine nuclear fuel in sealed dry storage casks. By assessing muons both before and after passing through the cask, one can infer details about the cask’s interior by analyzing scattering angle data. The effective scattering angles of muons depend on the characteristics of the interacting material, such as the atomic number (Z). This allows for the deduction of the material and geometric composition of the cask’s inventory. When employing simulations to forecast muon paths within the cask, it is essential to scrutinize the impact of modeling assumptions and simplifications on the scattering angle distribution.
In this study, we examine the influence of modeling assumptions and simplifications on the effective scattering angle. Additionally, the significance of the number of particles used is shown. We evaluate four GEANT4 cask models of a CASTOR® V/19, each incorporating varying degrees of simplification, and analyze their impact on the projected muon scattering angle. These simplifications include both the simplification of individual geometric components of the cask and the complete exclusion of specific components. We assess and prioritize the various model simplifications in terms of their effect on the observed scattering angle. We recognize the importance of thoughtfully considering the degree of simplification used in the model to ensure accurate and reliable results for the scattering angle distribution.