ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
Khaldoon Al-Dawood, Scott Palmtag
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S664-S679
Research Article | doi.org/10.1080/00295639.2024.2347696
Articles are hosted by Taylor and Francis Online.
When performing core loading pattern design in fast spectrum reactors, it is often assumed that the larger neutron mean free path in fast reactors makes the core loading pattern less significant than in thermal reactors. Due to this assumption, the literature often includes homogeneous core designs for liquid-metal-cooled fast reactors (LMFRs). In this paper, heterogeneous loading patterns are investigated using modern LMFR multiphysics analysis. It was found that the figures of merit (FOMs) used to design cores are very sensitive to the core loading pattern, and better core designs (measured by the FOM) can be obtained from heterogeneous designs.
Based on this investigation, a need for a modern LMFR core loading pattern design methodology is identified and developed. The methodology is demonstrated through the optimization of the core loading pattern of a sodium-cooled fast reactor. The reactor design used in this demonstration is based on the Super Power Reactor Innovative Small Modular (SPRISM) core, and an optimized loading pattern is obtained by searching for the fuel enrichment and locations of the driver and blanket assemblies. The objectives of the search are to reduce the fuel cost and peaking factors, while meeting the design constraints.
To calculate the fuel cost, a preliminary cost model is developed and applied for transuranium fuel loading. Upon establishing the methodology, six optimization algorithms are tested for their effectiveness in solving the LMFR core loading pattern problem. Four of the algorithms are population based: Gray Wolf Optimization, Salp Swarm Optimization, Whale Optimization Algorithm, and the Moth Flame Optimization.
A reinforcement learning algorithm, called the proximal policy optimization, was also selected. Finally, the differential evolution (DE) algorithm was selected as the choice of an evolutionary-based algorithm. All algorithms showed a competitive converged design. However, the DE showed more favorable performance since it was able to converge to a superior design compared to the rest of the algorithms with a reasonable number of design sample evaluations, in addition to avoiding local minima entrapment.