ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Chen Dubi, Anil K. Prinja
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S649-S663
Research Article | doi.org/10.1080/00295639.2024.2324532
Articles are hosted by Taylor and Francis Online.
Modeling and simulation of stochastic fission chains, often referred to as zero power reactor noise or stochastic transport, is a central topic in nuclear science and engineering, with important practical applications in reactor control and measurements. The common mathematical setting for studying reactor noise is through branching processes, typically modeled using forward and backward master equations. Because of the high complexity of the problem, reactor noise is typically studied under the point model approximation and in a linear setting, which neglects any reactivity feedbacks. On the other hand, since reactivity feedbacks are dominant in power reactors, stochastic models and simulations in a nonlinear setting are of great interest. For this reason, there is a constant interest in new mathematical frameworks that will enable modeling and simulation in a complete fashion. In the present study, we look at a branching process with a negative feedback, realized by a linear increase in the per capita death rate. In particular, the outline of the study is to compare two models for the above process. The first is the exact model, based on a forward master equation, and the second is the diffusion scale approximation (or the functional central limit approximation), realized in an Ito-type stochastic differential equation (SDE). The comparison between the two models is done in two levels. First, we show that the dynamics of the first and second moments of both models are governed by the same equations. Then, by realization of each model, we contract a Monte Carlo simulation for sampling the population size distribution. In particular, we show that once the population size is sufficiently large, the SDE approximation allows us to perform accurate simulations in a critical setting, with a dramatic reduction of the CPU time.