ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Yuanhao Gou, Conglong Jia, Zhaoyuan Liu, Kan Wang
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S485-S499
Research Article | doi.org/10.1080/00295639.2024.2380613
Articles are hosted by Taylor and Francis Online.
Neutron multiplicity pertains to the probability distribution of the quantity of neutrons released during induced or spontaneous fission processes within fissile materials. The technology for neutron multiplicity measurement leverages temporal correlations in the emission of fission neutrons from nuclear materials. It employs mathematical tools to elucidate the processes of neutron generation, multiplication within the nuclear material, and detection of outside nuclear materials. In this paper, two multiplicity counting methods are devised building on the RMC (Reactor Monte Carlo) code.
The results obtained from both methods, including singles, doubles, and triples counting rates, exhibit good agreement with MCNP. Additionally, parameters associated with the detection efficiency and decay time of the apparatus are computed. By amalgamating the acquired singles, doubles, and triples counting rates, the mass of fissile material within the sample is inversely determined using a passive method with the point model equation. Notably, the point model equation reveals that spontaneous fission neutrons and induced neutrons possess distinct energy spectra, challenging the validity of the assumption that the probability of neutrons being captured without causing fission can be disregarded. In light of these considerations, the neutron multiplicity counting equation was rederived. The accuracy of the Monte Carlo simulation results is improved using the new method.