ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
Peter J. Kowal, Kurt A. Dominesey, Camden E. Blake, Robert A. Lefebvre, Forrest B. Brown, Wei Ji
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S451-S484
Research Article | doi.org/10.1080/00295639.2024.2395172
Articles are hosted by Taylor and Francis Online.
Monte Carlo (MC) transport codes are a cornerstone of nuclear reactor analysis frameworks, providing reference solutions and multigroup cross sections, and even as core components in multiphysics couplings. These applications can be seen in toolkits from the Nuclear Energy Advanced Modeling and Simulation program and the U.S. Nuclear Regulatory Commission’s BlueCRAB (Comprehensive Reactor Analysis Bundle).
Contrary to their ubiquitousness in reactor physics modeling and simulation, popular MC codes, such as MCNP, Serpent, and KENO, are still reliant on antiquated textual input formats. These input languages use a plethora of keywords with terse syntax to specify all facets of a model, including its geometry, materials, physics settings, and tally options. This poses a steep learning curve and a poor user experience. Being tied to unique text-based input formats also significantly complicates programmatic input generation or modification that may be desired and/or required within a multiphysics framework.
This work demonstrates how the development of programmatic interfaces for MC codes can support model unification and translation activities. Building on the Python application program interface (API) development of MCNPy, similar capabilities are being implemented for Serpent that are able to support model translation. In future work, the Serpent API capabilities will be made more robust and the work will be further expanded to include translations with KENO.