ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
Alexis Jinaphanh, Giorgio Valocchi, Andrea Zoia
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S406-S434
Research Article | doi.org/10.1080/00295639.2024.2323225
Articles are hosted by Taylor and Francis Online.
In this paper, we describe the implementation, verification, and numerical validation of Generalized Perturbation Theory (GPT) capabilities in the TRIPOLI4® Monte Carlo code. The GPT is applied to reaction rate ratios (linear forms) and effective kinetics parameters (bilinear forms). For these latter, we focus in particular on the effective neutron generation time Λeff, the effective prompt lifetime ℓeff, and the effective delayed neutron fraction βeff. Verification is achieved comparing the results obtained using TRIPOLI-4® to benchmarks where analytical solutions are available. Numerical validation is performed with respect to independent Monte Carlo calculations using the SCALE 6.2.4 and SERPENT 2.2 codes, to published results, and to direct perturbations. Finally, a comparison with respect to the APOLLO3® deterministic code is performed for the EPICURE experimental configuration of the water-moderated EOLE reactor core, formerly operated at CEA.