ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
Nan An, Xiaoyu Guo, Hao Luo, Zhaoyuan Liu, Kan Wang
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S325-S341
Research Article | doi.org/10.1080/00295639.2024.2363575
Articles are hosted by Taylor and Francis Online.
In iterative Monte Carlo calculations for nuclear reactors, the inactive cycles should be calculated first to ensure that the source distribution is converged, and then the tallies of various parameters in the active cycles can begin. In order to acquire the mesh-free distribution of the fission source, this research proposes the functional expansion tallies (FET) source convergence diagnosis method in the Reactor Monte Carlo code, which is a self-developed stochastic simulation code maintained by the Reactor Engineering Analysis Laboratory of Tsinghua University.
Due to the randomness in Monte Carlo calculations and the difficulty in determining the precise source convergence, this paper proposes a diagnostic tool based on function curve similarity and moving average, and proposes an online real-time source convergence diagnosis method. The FET online source convergence method can terminate the calculation of the inactive cycle in real time according to the convergence diagnostic tool; thus it can greatly decrease the calculation time.
The precise and effective transfer of data between different meshes is a difficult issue of thermal and physical coupling. Converting two separate meshes and transferring the data are exceptionally difficult and complex tasks within the conventional nuclear thermal-physics coupling approach. By applying the FET method to nuclear thermal-physics coupling, the mesh-free continuous-space fission source distribution can be obtained, which is suitable for more complex meshes. Additionally, computational memory can be minimized by replacing (transforming) the data from numerous mesh power distribution data points with the coefficients of the function.