ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Gabriel Suau, Ansar Calloo, Rémi Baron, Romain Le Tellier
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S295-S311
Research Article | doi.org/10.1080/00295639.2024.2340173
Articles are hosted by Taylor and Francis Online.
This paper describes the implementation of efficient and portable vectorized sweep kernels as part of the resolution of the neutron transport equation on three-dimensional Cartesian grids using the discrete ordinates (Sn) method for the angular variable and the diamond differencing (DD) scheme for the spatial discretization. Vectorization is set up along the directions within the same octant and is independent of the spatial discretization order; therefore, the extension of this technique to high-order DD or discontinuous Galerkin schemes is immediate. Our implementation is written in C++17 and relies on the Kokkos performance portability framework. This library allows one to express shared-memory parallelism (including vectorization) in a machine-independent way and supports many backends including CUDA and OpenMP. Our vectorization procedure relies on the portable single instruction multiple data types provided by Kokkos. The method has been implemented for DD schemes up to order 2 and yields promising results on CPUs supporting standard vector instructions.