ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Gustavo A. Lorensi, Leonardo R. C. Moraes, Richard Vasques, Esequia Sauter, Fábio S. de Azevedo
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S235-S248
Research Article | doi.org/10.1080/00295639.2024.2342498
Articles are hosted by Taylor and Francis Online.
Over time, several methods were developed to deal with neutral particle transport problems. The interest in these problems is related to their wide range of applications, from neutron transport and heat transfer in nuclear reactors to radiative transfer in atmospheric clouds. Unlike the discrete ordinates or discrete ordinates–like methods, integral methods do not require discretization of angular variables. Instead, angular variables are completely eliminated by an integration procedure over the solid angle, which allows elimination of the ray effect. That said, this paper presents a new approach to estimate the scalar flux in two-dimensional fixed-source neutron transport problems in a heterogeneous medium, considering isotropic scattering and vacuum and reflective boundary conditions. Here, the Nyström method is combined with the singularity-subtraction technique to present an integral formulation for the scalar flux in a mesh grid over all regions of the domain. The iterative method of the Neumann series is used as an alternative to direct methods to solve the resulting system of equations generated from the domain discretization. Numerical results are given to verify the offered method.