ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
J. Darby Smith, Rich Lehoucq, Brian Franke
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S220-S234
Research Article | doi.org/10.1080/00295639.2024.2350086
Articles are hosted by Taylor and Francis Online.
Traditional Monte Carlo methods for particle transport utilize source iteration to express the solution, the flux density, of the transport equation as a Neumann series. Our contribution is to show that the particle paths simulated within source iteration are associated with the adjoint flux density and the adjoint particle paths are associated with the flux density. We make our assertion rigorous through the use of stochastic calculus by representing the particle path used in source iteration as a solution to a stochastic differential equation (SDE). The solution to the adjoint Boltzmann equation is then expressed in terms of the same SDE, and the solution to the Boltzmann equation is expressed in terms of the SDE associated with the adjoint particle process. An important consequence is that the particle paths used within source iteration simultaneously provide Monte Carlo samples of the flux density and adjoint flux density in the detector and source regions, respectively. The significant practical implication is that particle trajectories can be reused to obtain both forward and adjoint quantities of interest. To the best our knowledge, the reuse of entire particles paths has not appeared in the literature. Monte Carlo simulations are presented to support the reuse of the particle paths.