ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
J. Darby Smith, Rich Lehoucq, Brian Franke
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S220-S234
Research Article | doi.org/10.1080/00295639.2024.2350086
Articles are hosted by Taylor and Francis Online.
Traditional Monte Carlo methods for particle transport utilize source iteration to express the solution, the flux density, of the transport equation as a Neumann series. Our contribution is to show that the particle paths simulated within source iteration are associated with the adjoint flux density and the adjoint particle paths are associated with the flux density. We make our assertion rigorous through the use of stochastic calculus by representing the particle path used in source iteration as a solution to a stochastic differential equation (SDE). The solution to the adjoint Boltzmann equation is then expressed in terms of the same SDE, and the solution to the Boltzmann equation is expressed in terms of the SDE associated with the adjoint particle process. An important consequence is that the particle paths used within source iteration simultaneously provide Monte Carlo samples of the flux density and adjoint flux density in the detector and source regions, respectively. The significant practical implication is that particle trajectories can be reused to obtain both forward and adjoint quantities of interest. To the best our knowledge, the reuse of entire particles paths has not appeared in the literature. Monte Carlo simulations are presented to support the reuse of the particle paths.