ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Emeline Rosier, Li Mao, Richard Sanchez, Luiz Leal, Igor Zmijarevic
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S121-S134
Research Article | doi.org/10.1080/00295639.2024.2340143
Articles are hosted by Taylor and Francis Online.
The legacy subgroup method of the APOLLO3® code, denoted the SG-GR-383g method in this paper, relies on the fine structure equation solved by the means of the General Resonance model and of the mathematical probability tables (MPTs) that are computed on the fly for the resonant mixture. Because of the use of these MPTs, a fine energy structure of 383 groups has to be employed.
In our recent work, with the intention of decreasing computational time, a subgroup method adapted to coarse-group calculations has been implemented in APOLLO3. It is based on the use of physical probability tables (PPTs), taking into account the mixture treatment, and on the Intermediate Resonance model to derive the subgroup equations, as well as the application of the Superhomogenization correction to ensure the preservation of the reaction rates in a multigroup calculation. This method, denoted SG-IR-69g in this paper, uses a 69-coarse-group energy mesh. This paper presents a comparison of the SG-IR-69g method with the legacy SG-GR-383g method, taking as reference the continuous-energy Monte Carlo TRIPOLI-4® calculations on test cases of 3 × 3 pin cells, with a central cell being either a water hole or a Gd-UO2 pin cell surrounded by UO2 pin cells. Similar accuracy on the multiplication factor was obtained for both the SG-GR-383g and SG-IR-69g methods, although more error compensations were found in the multigroup reaction rates of the latter. Even though the calculation of PPTs is more expensive than that of the mathematical ones, overall the SG-IR-69g method is more time efficient thanks to the decrease in the number of energy groups.