ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Ho Nieh nominated to the NRC
Nieh
President Trump recently nominated Ho Nieh for the role of commissioner in the Nuclear Regulatory Commission through the remainder of a term that will expire June 30, 2029.
Nieh has been the vice president of regulatory affairs at Southern Nuclear since 2021, though he is currently working as a loaned executive at the Institute of Nuclear Power Operations, where he has been for more than a year.
Nieh’s experience: Nieh started his career at the Knolls Atomic Power Laboratory, where he worked primarily as a nuclear plant engineer and contributed as a civilian instructor in the U.S. Navy’s Nuclear Power Program.
From there, he joined the NRC in 1997 as a project engineer. In more than 19 years of service at the organization, he served in a variety of key leadership roles, including division director of Reactor Projects, division director of Inspection and Regional Support, and director of the Office of Nuclear Reactor Regulation.
Emeline Rosier, Li Mao, Richard Sanchez, Luiz Leal, Igor Zmijarevic
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S121-S134
Research Article | doi.org/10.1080/00295639.2024.2340143
Articles are hosted by Taylor and Francis Online.
The legacy subgroup method of the APOLLO3® code, denoted the SG-GR-383g method in this paper, relies on the fine structure equation solved by the means of the General Resonance model and of the mathematical probability tables (MPTs) that are computed on the fly for the resonant mixture. Because of the use of these MPTs, a fine energy structure of 383 groups has to be employed.
In our recent work, with the intention of decreasing computational time, a subgroup method adapted to coarse-group calculations has been implemented in APOLLO3. It is based on the use of physical probability tables (PPTs), taking into account the mixture treatment, and on the Intermediate Resonance model to derive the subgroup equations, as well as the application of the Superhomogenization correction to ensure the preservation of the reaction rates in a multigroup calculation. This method, denoted SG-IR-69g in this paper, uses a 69-coarse-group energy mesh. This paper presents a comparison of the SG-IR-69g method with the legacy SG-GR-383g method, taking as reference the continuous-energy Monte Carlo TRIPOLI-4® calculations on test cases of 3 × 3 pin cells, with a central cell being either a water hole or a Gd-UO2 pin cell surrounded by UO2 pin cells. Similar accuracy on the multiplication factor was obtained for both the SG-GR-383g and SG-IR-69g methods, although more error compensations were found in the multigroup reaction rates of the latter. Even though the calculation of PPTs is more expensive than that of the mathematical ones, overall the SG-IR-69g method is more time efficient thanks to the decrease in the number of energy groups.