ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Arthur Le Bars, Andrea Gammicchia, Simone Santandrea
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S105-S120
Research Article | doi.org/10.1080/00295639.2024.2328962
Articles are hosted by Taylor and Francis Online.
For some years now, the TDT (two- and three-dimensional transport) solver of the APOLLO3® deterministic neutron transport code has been able to perform lattice calculations on three-dimensional extruded and unstructured geometries. A polynomial expansion of the angular flux has been implemented to better describe the flux gradient axially to reduce the number of computational meshes required to reach a given accuracy. Then the polynomial approximation was extended to macroscopic cross sections to perform evolution calculations. Besides these transport schemes, synthetic acceleration has also been implemented, relying on double PN approximations of the angular flux on the boundaries of the spatial regions. The solver has already introduced several techniques to reduce the transport and memory footprint; for example, for the storage of the surfaces crossed by a trajectory or the classification of chords.
In this paper, new optimizations are presented. One deals with how monomials of the polynomial basis are integrated along trajectories. Another one concerns the computation of the source term of the transmission equation in the case of polynomial cross sections. The last optimization exploits the fact that, along horizontal trajectories, the flux and the cross sections are constant to speed up the sweep algorithm. Calculations on 5 × 5 and 7 × 7 pressurized water reactor assemblies were performed to assess the gains of these recently developed strategies. The results show good improvements both in computing time and in memory footprint reductions.