ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Arthur Le Bars, Andrea Gammicchia, Simone Santandrea
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S105-S120
Research Article | doi.org/10.1080/00295639.2024.2328962
Articles are hosted by Taylor and Francis Online.
For some years now, the TDT (two- and three-dimensional transport) solver of the APOLLO3® deterministic neutron transport code has been able to perform lattice calculations on three-dimensional extruded and unstructured geometries. A polynomial expansion of the angular flux has been implemented to better describe the flux gradient axially to reduce the number of computational meshes required to reach a given accuracy. Then the polynomial approximation was extended to macroscopic cross sections to perform evolution calculations. Besides these transport schemes, synthetic acceleration has also been implemented, relying on double PN approximations of the angular flux on the boundaries of the spatial regions. The solver has already introduced several techniques to reduce the transport and memory footprint; for example, for the storage of the surfaces crossed by a trajectory or the classification of chords.
In this paper, new optimizations are presented. One deals with how monomials of the polynomial basis are integrated along trajectories. Another one concerns the computation of the source term of the transmission equation in the case of polynomial cross sections. The last optimization exploits the fact that, along horizontal trajectories, the flux and the cross sections are constant to speed up the sweep algorithm. Calculations on 5 × 5 and 7 × 7 pressurized water reactor assemblies were performed to assess the gains of these recently developed strategies. The results show good improvements both in computing time and in memory footprint reductions.