ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Eugene d’Eon, Anil Prinja
Nuclear Science and Engineering | Volume 199 | Number 1 | April 2025 | Pages S93-S104
Research Article | doi.org/10.1080/00295639.2024.2420539
Articles are hosted by Taylor and Francis Online.
We demonstrate a method to calculate high-precision benchmarks for the reflectance and transmittance of a finite rod with a stochastic cross section, assuming that the attenuation law has a known closed form and both the single-scattering albedo and scattering kernel are deterministic. We introduce new 10-digit values for an existing binary-Markov benchmark (including mean and variance), along with several new benchmarks defined for non-Markov binary mixtures and a continuous-fluctuation model featuring gamma stationary statistics. Furthermore, we reveal that our analysis of scattering in the stochastic rod enables a practical algorithm for identifying the parameters of an n-ary Markov mixture that most accurately approximates transport in a non-Markov system.