ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Jianpeng Liu, Zhiyong Wang, Qing Li, Gong Helin
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 888-906
Research Article | doi.org/10.1080/00295639.2024.2406641
Articles are hosted by Taylor and Francis Online.
In this paper, a dynamic prediction scheme that combines the data assimilation method and dynamic mode decomposition (DMD) is brought out for the prediction of the whole-core power distribution under xenon oscillations within the HRP1000 reactor. The DMD is used to predict the power values over the nodes where in-core detectors exist, and predicted power is then extended to the whole core using data assimilation methodologies, e.g. the inverse distance–based data assimilation method. In the data assimilation stage, the selection of the background physical field and the regularization factor under different noise levels is investigated. A series of numerical experiments, based on the HPR1000 proof of feasibility of the coupling scheme, is conducted under low noise levels or low prediction step sizes. Finally, the optimal application conditions and the prediction performance of the coupling scheme in different noise levels are analyzed for practical engineering usage.