ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Jianpeng Liu, Zhiyong Wang, Qing Li, Gong Helin
Nuclear Science and Engineering | Volume 199 | Number 6 | June 2025 | Pages 888-906
Research Article | doi.org/10.1080/00295639.2024.2406641
Articles are hosted by Taylor and Francis Online.
In this paper, a dynamic prediction scheme that combines the data assimilation method and dynamic mode decomposition (DMD) is brought out for the prediction of the whole-core power distribution under xenon oscillations within the HRP1000 reactor. The DMD is used to predict the power values over the nodes where in-core detectors exist, and predicted power is then extended to the whole core using data assimilation methodologies, e.g. the inverse distance–based data assimilation method. In the data assimilation stage, the selection of the background physical field and the regularization factor under different noise levels is investigated. A series of numerical experiments, based on the HPR1000 proof of feasibility of the coupling scheme, is conducted under low noise levels or low prediction step sizes. Finally, the optimal application conditions and the prediction performance of the coupling scheme in different noise levels are analyzed for practical engineering usage.