ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
The progress so far: An update on the Reactor Pilot Program
It has been about three months since the Department of Energy named 10 companies for its new Reactor Pilot Program, which maps out how the DOE would meet the goal announced by executive order in May of having three reactors achieve criticality by July 4, 2026.
Emerson W. Shands, Jim E. Morel, Cory D. Ahrens, Brian C. Franke
Nuclear Science and Engineering | Volume 199 | Number 5 | May 2025 | Pages 854-871
Research Article | doi.org/10.1080/00295639.2024.2385220
Articles are hosted by Taylor and Francis Online.
We derive a new Galerkin quadrature (GQ) method for S calculations that differs from the two methods preceding it in that a matrix inverse for an matrix, where is the number of directions in the quadrature set, is no longer required. Galerkin quadrature methods are designed for calculations with highly anisotropic scattering. Such methods are not simply special angular quadratures but also are methods for representing the S scattering source that offers several advantages relative to the standard scattering source representation when highly truncated Legendre cross-section expansions must be used. Galerkin quadrature methods are also useful when the scattering is moderately anisotropic, but the quadrature being used is not sufficiently accurate for the order of the scattering source expansion that is required. We derive the new method and present computational results showing that its performance for two challenging problems is comparable to those of the two GQ methods that preceded it.