ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Edward W. Larsen, Tomás M. Paganin, Richard Vasques
Nuclear Science and Engineering | Volume 199 | Number 5 | May 2025 | Pages 793-802
Research Article | doi.org/10.1080/00295639.2024.2392942
Articles are hosted by Taylor and Francis Online.
The quasidiffusion (QD) method is an established and efficient iterative technique for solving particle transport problems. Each QD iteration consists of a high-order SN sweep, followed by a low-order QD calculation. QD has two defining characteristics: (1) its iterations converge rapidly for any spatial grid and (2) the converged scalar fluxes from the high-order SN sweep and the low-order QD calculation differ, by spatial truncation errors, from each other and from the scalar flux solution of the SN equations. In this paper, we show that by including a transport consistency factor in the low-order equation, the converged high-order and low-order scalar fluxes become equal to each other and to the converged SN scalar flux. However, the inclusion of the transport consistency factor has a negative impact on the convergence rate. We present numerical results that demonstrate the effect of the transport consistency factor on stability.