ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Sign up for the Certified Nuclear Professional exam
Applications are now open for the summer 2025 testing period for the American Nuclear Society’s Certified Nuclear Professional (CNP) exam. Applications are being accepted through July 25, and only three testing sessions are offered per year, so it is important to apply soon.
The test will be administered from August 12 through September 9. To check eligibility and schedule your exam, click here.
Edward W. Larsen, Tomás M. Paganin, Richard Vasques
Nuclear Science and Engineering | Volume 199 | Number 5 | May 2025 | Pages 793-802
Research Article | doi.org/10.1080/00295639.2024.2392942
Articles are hosted by Taylor and Francis Online.
The quasidiffusion (QD) method is an established and efficient iterative technique for solving particle transport problems. Each QD iteration consists of a high-order SN sweep, followed by a low-order QD calculation. QD has two defining characteristics: (1) its iterations converge rapidly for any spatial grid and (2) the converged scalar fluxes from the high-order SN sweep and the low-order QD calculation differ, by spatial truncation errors, from each other and from the scalar flux solution of the SN equations. In this paper, we show that by including a transport consistency factor in the low-order equation, the converged high-order and low-order scalar fluxes become equal to each other and to the converged SN scalar flux. However, the inclusion of the transport consistency factor has a negative impact on the convergence rate. We present numerical results that demonstrate the effect of the transport consistency factor on stability.