ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Zenghao Dong, Jianquan Liu, Xinyi Niu, Lihan Hai, Wenlong Zhou
Nuclear Science and Engineering | Volume 199 | Number 4 | April 2025 | Pages 631-652
Research Article | doi.org/10.1080/00295639.2024.2381391
Articles are hosted by Taylor and Francis Online.
This paper employs computational fluid dynamics to investigate the fuel assemblies within a sodium-cooled fast neutron reactor. To begin with, we developed computational models for seven wire spacer fuel rods under both normal operating conditions and transient blockage conditions. We conducted separate analyses to assess the impacts of normal operation, blockage thickness, and blockage area. This work allowed us to acquire data on the heat transfer properties and the flow field variations for the coolant, blockages, and fuel rods across different conditions. Subsequently, we leveraged these flow field alterations to examine the resulting temperature distributions. Analyses were conducted to evaluate the effects of normal operation, blockage thickness, and blockage area. The research acquired the heat transfer characteristics and flow field distribution variations of the coolant, blockages, and fuel rods under different operational conditions and utilized these variations to analyze the temperature distribution. Through research analysis, the following conclusions have been reached. Under normal operating conditions, the temperature and flow fields of the fuel components exhibit cyclic variations along the axial length, corresponding to the pitch of the wire spacers. Heat exchange between the internal and external subchannels occurs independently, which further substantiates that the incorporation of wire spacers strengthens lateral flow disturbances. This effect is more pronounced within the internal subchannels, thereby leading to a marked difference in the flow fields on either side of the wire spacers. In the case of blocked conditions, an increase in blockage thickness and area both lead to higher temperatures for the coolant, the blockages themselves, and the fuel rods. The temperature in the recirculation zone behind the blockages also rises with increasing blockage thickness and area, although the magnitude of this increase is not significant. After the onset of blockage conditions, the instantaneous temperature tends to increase. As time progresses, the instantaneous temperature fields following the blockage do not display greater fluctuations in temperature change than those observed after the system has stabilized. For the temperature parameters of the convective field, differences arising from an increase in blockage area are more significant than those caused by an increase in blockage thickness. When blockage area and blockage thickness are increased by the same multiple, an increase in blockage area results in a higher temperature peak. Increasing the area of blockage necessitates a longer duration for both the temperature and the velocity fields to revert to equilibrium.