ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
A. M. Alshamy, M. M. Musthafa
Nuclear Science and Engineering | Volume 199 | Number 4 | April 2025 | Pages 578-585
Research Article | doi.org/10.1080/00295639.2024.2381397
Articles are hosted by Taylor and Francis Online.
We study the effect of the angular momentum dependence of the optical potential transparency on the neutron-nucleus cross section. In this work, we derive a functional form of the neutron-nucleus cross section with respect to spherical optical potential using the collision matrix and modify it. We also apply an analytical model (Ramsauer) to the square optical potential and the optical model using the TALYS 1.96 code to get the angular momentum–independent transparency and demonstrate the effect of the angular momentum dependence via comparison of two models. In this work, we calculate the neutron cross sections for 40 90 nuclei, with energies 100200MeV theoretically, the for 0 case. We find that the angular momentum dependence of the transparency treats good calculations of the neutron-nucleus cross section; a finite number of angular momentums will contribute appreciably to the nuclear reaction. The present study on smooth optical potential leads to useful insight into the mechanisms of neutron-induced reactions, particularly for medium nuclei at high energies.