ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Mohamed Y. Hanfi, Mohammad W. Marashdeh, Sitah Alanazi, Mamduh J. Aljaafreh, Karem A. Mahmoud
Nuclear Science and Engineering | Volume 199 | Number 4 | April 2025 | Pages 557-568
Research Article | doi.org/10.1080/00295639.2024.2383105
Articles are hosted by Taylor and Francis Online.
This work aims to prepare a new series of polyepoxide resins reinforced with a mixture of WO3 and Bi2O3 compounds. The effect of replacing WO3 with by Bi2O3 on the radiation shielding parameters was experimentally evaluated using a NaI (Tl) detector and many radioactive sources, including 22Na, 133Ba, 137Cs, 60Co, and 152Eu. The linear attenuation coefficient for the prepared new polyepoxide-based composites was improved when substituting increasing amounts of WO3 with Bi2O3. When increased from 2.164 to 2.943 cm−1 (at 33 keV) and from 0.073 to 0.104 cm−1 (at 1332 keV), the Bi2O3 concentration in the prepared composites varied from 0 to 10 wt%, respectively. The substitution of WO3 with Bi2O3 greatly improved the shielding parameters of the fabricated composites. The half-value thickness, transmission factor, and lead-equivalent thickness were observed to decrease with increasing concentrations of Bi2O3 in the fabricated composites.