ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Xiangyun Zhou, Shixiang Hu, Weiding Zhuo, Long Wang, De’An Sun, Luqiang He, You Gao, Xiayang Zhang
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 490-505
Research Article | doi.org/10.1080/00295639.2024.2372513
Articles are hosted by Taylor and Francis Online.
Temperature distribution plays a crucial role in the safety performance assessment and thermal dimensioning design in a deep geological repository for disposing high-level waste. In this study, a two-dimensional axisymmetric model of a single container for heat transfer was created. The fully analytical solution to temperature distribution in the repository was derived by utilizing the methods of separation of variables, impulse theorem, and Fourier transform.
The fully analytical solution was validated by comparing with the existing semi-analytical solution and line heat source solution. The temperature change in the near field around the container was analyzed using the present solution, and the influences of different parameters on the container surface temperature were investigated. Furthermore, the proposed fully analytical solution was used to predict the results of the in situ test.
The findings indicate that the temperature in the buffer layer rapidly increases and reaches its peak value within the first 2 years, then gradually decreases thereafter with time. The thickness of the bentonite pellet layer had a greater effect on the container surface temperature than that of the bentonite block layer. A comparison between the fully analytical solution and the results of the in situ heating test demonstrated that the proposed fully analytical solution can accurately predict the temperature variations in the in situ heating test.