ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
D. Ghasemabadi, H. Zaki Dizaji, M. Abdollahzadeh
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 476-489
Research Article | doi.org/10.1080/00295639.2024.2370675
Articles are hosted by Taylor and Francis Online.
This research aims to investigate and analyze the optimal beta radioisotopes for use in betavoltaic batteries, focusing on enhancing a betavoltaic battery’s performance and efficiency. We conducted a comprehensive analysis of 1252 radioisotopes, among which are 955 beta emitters and 502 beta-minus decay modes. We identified 27 pure beta emitters and further narrowed these down to select the most suitable candidates for betavoltaic applications. We utilized the ICRP 107 report and DECDATA auxiliary software to evaluate some characteristics and features of beta emitters. Our evaluation led to the selection of two groups of radioisotopes—3H and 63Ni from pure beta emitters, and 147Pm, 151Sm, 171Tm, and 155Eu from impure beta emitters—based on their power, minimum volume factor, and cell and source dimensions. The selected radioisotopes demonstrate the potential to significantly improve betavoltaic battery design, offering a balance between energy output and realistic dimensions for practical applications. The findings provide a framework for selecting and utilizing suitable beta emitter radioisotopes, which is crucial for advancing betavoltaic battery technology. Our results contribute to a deeper understanding of the characteristics required for optimal radioisotope selection, paving the way for more efficient and compact betavoltaic batteries.