ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
D. Ghasemabadi, H. Zaki Dizaji, M. Abdollahzadeh
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 476-489
Research Article | doi.org/10.1080/00295639.2024.2370675
Articles are hosted by Taylor and Francis Online.
This research aims to investigate and analyze the optimal beta radioisotopes for use in betavoltaic batteries, focusing on enhancing a betavoltaic battery’s performance and efficiency. We conducted a comprehensive analysis of 1252 radioisotopes, among which are 955 beta emitters and 502 beta-minus decay modes. We identified 27 pure beta emitters and further narrowed these down to select the most suitable candidates for betavoltaic applications. We utilized the ICRP 107 report and DECDATA auxiliary software to evaluate some characteristics and features of beta emitters. Our evaluation led to the selection of two groups of radioisotopes—3H and 63Ni from pure beta emitters, and 147Pm, 151Sm, 171Tm, and 155Eu from impure beta emitters—based on their power, minimum volume factor, and cell and source dimensions. The selected radioisotopes demonstrate the potential to significantly improve betavoltaic battery design, offering a balance between energy output and realistic dimensions for practical applications. The findings provide a framework for selecting and utilizing suitable beta emitter radioisotopes, which is crucial for advancing betavoltaic battery technology. Our results contribute to a deeper understanding of the characteristics required for optimal radioisotope selection, paving the way for more efficient and compact betavoltaic batteries.