ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Nuclear advocates push lawmakers in Texas
As state legislatures nationwide near the end of their spring sessions, nuclear advocates hope to spur momentum on Texas legislation that would provide taxpayer-funded grants to developers of new nuclear technology in the state.
Mohammad Albati, Tatsuya Sakurahara, Seyed Reihani, Ernie Kee, Jaemin Yang, Terry von Thaden, Richard Kesler, Farzaneh Masoud, Zahra Mohaghegh
Nuclear Science and Engineering | Volume 199 | Number 3 | March 2025 | Pages 445-464
Research Article | doi.org/10.1080/00295639.2024.2366735
Articles are hosted by Taylor and Francis Online.
In probabilistic risk assessment (PRA) of nuclear power plants (NPPs), human reliability analysis (HRA) is conducted to identify potential human failure events that could contribute to risk scenarios and estimate human error probabilities. Lessons learned from the 2011 Fukushima Daiichi NPP accident underscored that for PRA, it is critical to model external control room (Ex-CR) human actions. The state-of-practice HRA methods, historically developed for the main control room HRA, are limited in capturing the unique nature of Ex-CR human actions, such as location dependence (in addition to the time dependence) of human actions and spatiotemporal interactions of human performance with the surrounding physical environments, for instance, hazard propagation.
To advance the Ex-CR HRA in the context of the fire PRA for NPPs, the authors’ team developed a simulation-based fire crew performance model using an agent-based modeling (ABM) technique. The ABM fire crew simulation was coupled with a fire progression model through a spatiotemporal interface using a geographic information system. This paper focuses on the validation of the ABM simulation, which is the key requirement for the simulation-based Ex-CR human performance model to be utilized in PRA. The existing validation approach, initially developed for physical models in the fire PRA of NPPs, is extended for validation of the simulation-based Ex-CR human performance model.
Model uncertainty is used as a measure of model validity, which facilitates the incorporation of the validation result into the PRA. The degree of the model uncertainty is characterized by a lognormal error model whose parameters are quantified based on a pairwise comparison between empirical data and model predictions.
The proposed validation approach is demonstrated using a case study of the fire PRA of NPPs. This study makes two research contributions: (1) it is the first to validate the simulation-based Ex-CR human performance model against empirical human performance data and incorporate the validation result into the PRA of NPPs, and (2) this study, for the first time, conducts a controlled experimental test to collect empirical data for fire crew performance at NPPs.