ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Hanford proposes “decoupled” approach to remediating former chem lab
Working with the Environmental Protection Agency, the Department of Energy has revised its planned approach to remediating contaminated soil underneath the Chemical Materials Engineering Laboratory (commonly known as the 324 Building) at the Hanford Site in Washington state. The soil, which has been designated the 300-296 waste site, became contaminated as the result of a spill of highly radioactive material in the mid-1980s.
W. A. Metwally, M. N. Dupont, W. J. Marshall, C. Celik, V. Karriem, A. Lang, K. L. Fassino, A. M. Shaw
Nuclear Science and Engineering | Volume 199 | Number 2 | February 2025 | Pages 185-193
Review Article | doi.org/10.1080/00295639.2024.2360309
Articles are hosted by Taylor and Francis Online.
Criticality safety analyses are conducted to show compliance with regulatory standards and to demonstrate safe operational conditions during the storage and transportation of spent nuclear fuel. Given the increased interest in the industry in low-enriched uranium plus (LEU+) and higher-burnup fuel, it is important to study the impact of such fuels’ use on criticality safety analyses and the resulting nuclear data–induced uncertainties. In this work, nominal pressurized water reactor assemblies with LEU+ fuel enrichments up to 8 wt% 235U and high burnups up to 80 GWd/tonne U were studied. The assemblies were placed in a generic burnup credit cask GBC-32. As a result of the different covariance libraries, using the ENDF/B-VII.1 nuclear data library consistently resulted in lower nuclear data uncertainties than did the use of the ENDF/B-VIII.0 data library. The highest contribution in the nuclear data–induced uncertainties resulted from the major actinides, and their contribution increased with increasing burnup and enrichment.