ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
S. V. Bogovalov, I. V. Tronin, A. V. Vasilyev
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 176-183
Research Article | doi.org/10.1080/00295639.2024.2332021
Articles are hosted by Taylor and Francis Online.
In this paper, numerical simulation methods are used to study issues related to the optimal operating modes of hyperspeed (rotor velocity 1000 m/s and above) model gas centrifuges (GCs) of various lengths and velocities of rotation. The possibility of gas extraction under optimal conditions is studied using three-dimensional modeling. It is shown that for hyperspeed GCs with the Pitot tube as gas extractor, simultaneous attainment of the optimal values for both friction power and waste flux, which are necessary for achieving the optimal operating mode, is unattainable, unlike GC models with a rotor velocity of 600 m/s. It is also shown that the working gas within the shockwave generated by the gas extractor can attain temperatures exceeding 1300 K, which raises the question of a possible accelerated decomposition of uranium hexafluoride.