ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Michael Pietrykowski, Mark R. Scott
Nuclear Science and Engineering | Volume 199 | Number 1 | January 2025 | Pages 151-161
Research Article | doi.org/10.1080/00295639.2024.2344957
Articles are hosted by Taylor and Francis Online.
Age dating a sample of nuclear material is a key part of predetonation technical nuclear forensics. As plutonium stockpiles age, they are more likely to require repurification and mixing to remove in-grown daughter products and maintain a consistent product. Existing age-dating techniques do not adequately address this problem. Four models were trained using machine learning techniques to determine (1) if a sample of weapons-grade plutonium had been repurified, (2) the elapsed time after repurification, and (3) the minimum and maximum elapsed times between repurification and its initial separation/purification/fabrication. The trained models predicted the repurification status with 99% accuracy, the age after repurification with a root-mean-square error (RMSE) of 0.34 years, and the minimum and maximum ages before repurification with RMSEs of 4.66 and 9.34 years, respectively. Age dating plutonium provides valuable insight into the country and possibly the facility of origin of the material, which is one tool to deter state-sponsored nuclear terrorism.