ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Nuclear fuel cycle reimagined: Powering the next frontiers from nuclear waste
In the fall of 2023, a small Zeno Power team accomplished a major feat: they demonstrated the first strontium-90 heat source in decades—and the first-ever by a commercial company.
Zeno Power worked with Pacific Northwest National Laboratory to fabricate and validate this Z1 heat source design at the lab’s Radiochemical Processing Laboratory. The Z1 demonstration heralded renewed interest in developing radioisotope power system (RPS) technology. In early 2025, the heat source was disassembled, and the Sr-90 was returned to the U.S. Department of Energy for continued use.
Rofida H. Khlifa, Nicolay N. Nikitenkov, Viktor N. Kudiiarov
Nuclear Science and Engineering | Volume 198 | Number 4 | April 2024 | Pages 825-831
Research Article | doi.org/10.1080/00295639.2023.2224464
Articles are hosted by Taylor and Francis Online.
Chromium carbide (CrC) coatings were proposed as an accident-tolerant fuel complementary concept to provide enhanced protection for the inner side of nuclear fuel claddings, with preliminary results showing promising performance. To evaluate the neutronics performance of CrC coatings, a reactor physics–based analysis was performed. A single VVER-1200 fuel assembly was used as a model, and the Monte Carlo code MCNPX was used to perform the calculations. Results were compared to previous work on metallic chromium performance as inner-side coating material. Results showed that CrC coatings generally have less negative impacts on neutronics performance compared to chromium coatings. Neutron flux spectra showed slight reductions in the thermal energy region that reached up to −0.6% in a 40-µm CrC internally coated fuel assembly at an energy of 0.025 eV. The analysis of CrC internally coated fuel assembly nuclide inventories showed a relative increase in the isotopic concentration of some nuclides such as 239Pu and 241Pu, which was less than 1% for the cases considered. Comparing the calculated negative neutronics impacts, such as thermal neutron flux and fuel assembly operating time reductions, caused by CrC and Cr coating materials, the study revealed that the difference between these induced negative neutronics impacts is proportional to coating thickness. Therefore, CrC coatings will be most effective in terms of mitigating negative neutronics impacts when the specified coating thickness is large.