ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Ahmad M. Ibrahim, Tucker C. McClanahan, Igor Remec
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 451-460
Research Article | doi.org/10.1080/00295639.2023.2209681
Articles are hosted by Taylor and Francis Online.
The target segments of the Oak Ridge National Laboratory Second Target Station (STS) neutron production facility become highly activated due to spallation reactions or nuclei transmutation by primary protons and emitted neutrons. Once the target segments are removed from their location within the core vessel, decay dose rates must be accurately quantified to determine the shielding configurations of remote-handling tools and transport casks and to aid in planning maintenance activities. For this analysis, we utilized a hybrid unstructured mesh (UM)/constructive solid geometry approach for calculating spallation products and neutron fluxes, activation calculations using the AARE package that includes the CINDER2008 activation code to calculate the decay photon source at different cooling times, and the ADVANTG code to accelerate the final decay photon transport calculation. Both Type 316 stainless steel (SS-316) and lead were investigated as candidates for shielding materials. The decay photon transport calculation through the thick SS-316 or lead shields exhibited between 25 and 30 orders-of-magnitude attenuations in the radial direction, depending on the shield. Such a difficult shielding calculation required advanced variance reduction. ADVANTG has some missing features, which limits its usability in spallation neutron source applications. It does not support volumetric sources created for MCNP6.2 UM capability. An approximate source was created for this problem. Not only was this approximate source needed for running the ADVANTG calculation to generate the weight windows, but also it was essential to develop source biasing (SB) parameters that were crucial for dramatically accelerating the decay photon transport in this problem. With this approximate source, the analysis was completed in a very reasonable computational time, and the design of the STS remote-handling equipment was finalized. This paper compares the efficiency of Monte Carlo simulations with different weight window and SB parameters calculated using different approximate ADVANTG calculations.