ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
AI and productivity growth
Craig Piercycpiercy@ans.org
This month’s issue of Nuclear News focuses on supply and demand. The “supply” part of the story highlights nuclear’s continued success in providing electricity to the grid more than 90 percent of the time, while the “demand” part explores the seemingly insatiable appetite of hyperscale data centers for steady, carbon-free energy.
Technically, we are in the second year of our AI epiphany, the collective realization that Big Tech’s energy demands are so large that they cannot be met without a historic build-out of new generation capacity. Yet the enormity of it all still seems hard to grasp.
or the better part of two decades, U.S. electricity demand has been flat. Sure, we’ve seen annual fluctuations that correlate with weather patterns and the overall domestic economic performance, but the gigawatt-hours of electricity America consumed in 2021 are almost identical to our 2007 numbers.
Ahmad M. Ibrahim, Tucker C. McClanahan, Igor Remec
Nuclear Science and Engineering | Volume 198 | Number 2 | February 2024 | Pages 451-460
Research Article | doi.org/10.1080/00295639.2023.2209681
Articles are hosted by Taylor and Francis Online.
The target segments of the Oak Ridge National Laboratory Second Target Station (STS) neutron production facility become highly activated due to spallation reactions or nuclei transmutation by primary protons and emitted neutrons. Once the target segments are removed from their location within the core vessel, decay dose rates must be accurately quantified to determine the shielding configurations of remote-handling tools and transport casks and to aid in planning maintenance activities. For this analysis, we utilized a hybrid unstructured mesh (UM)/constructive solid geometry approach for calculating spallation products and neutron fluxes, activation calculations using the AARE package that includes the CINDER2008 activation code to calculate the decay photon source at different cooling times, and the ADVANTG code to accelerate the final decay photon transport calculation. Both Type 316 stainless steel (SS-316) and lead were investigated as candidates for shielding materials. The decay photon transport calculation through the thick SS-316 or lead shields exhibited between 25 and 30 orders-of-magnitude attenuations in the radial direction, depending on the shield. Such a difficult shielding calculation required advanced variance reduction. ADVANTG has some missing features, which limits its usability in spallation neutron source applications. It does not support volumetric sources created for MCNP6.2 UM capability. An approximate source was created for this problem. Not only was this approximate source needed for running the ADVANTG calculation to generate the weight windows, but also it was essential to develop source biasing (SB) parameters that were crucial for dramatically accelerating the decay photon transport in this problem. With this approximate source, the analysis was completed in a very reasonable computational time, and the design of the STS remote-handling equipment was finalized. This paper compares the efficiency of Monte Carlo simulations with different weight window and SB parameters calculated using different approximate ADVANTG calculations.