ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Laura Laghi, Enrico Schiassi, Mario De Florio, Roberto Furfaro, Domiziano Mostacci
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2373-2403
Research Article | doi.org/10.1080/00295639.2022.2160604
Articles are hosted by Taylor and Francis Online.
This work aims to solve six problems with four different physics-informed machine learning frameworks and compare the results in terms of accuracy and computational cost. First, we considered the diffusion-advection-reaction equations, which are second-order linear differential equations with two boundary conditions. The first algorithm is the classic Physics-Informed Neural Networks. The second one is Physics-Informed Extreme Learning Machine. The third framework is Deep Theory of Functional Connections, a multilayer neural network based on the solution approximation via a constrained expression that always analytically satisfies the boundary conditions. The last algorithm is the Extreme Theory of Functional Connections (X-TFC), which combines Theory of Functional Connections and shallow neural network with random features [e.g., Extreme Learning Machine (ELM)]. The results show that for these kinds of problems, ELM-based frameworks, especially X-TFC, overcome those using deep neural networks both in terms of accuracy and computational time.