ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
House E&C members question the DOE
As work progresses on the Department of Energy’s Nuclear Reactor Pilot Program, which will progress through DOE authorization rather than Nuclear Regulatory Commission licensing, three members of the House Committee on Energy and Commerce have sent a critical letter to Energy Secretary Chris Wright.
The letter demands “information about the DOE and its employees’ dealings with the NRC and its staff” and expresses concern that DOE staff has “broken the firewall” between the departments.
Laura Laghi, Enrico Schiassi, Mario De Florio, Roberto Furfaro, Domiziano Mostacci
Nuclear Science and Engineering | Volume 197 | Number 9 | September 2023 | Pages 2373-2403
Research Article | doi.org/10.1080/00295639.2022.2160604
Articles are hosted by Taylor and Francis Online.
This work aims to solve six problems with four different physics-informed machine learning frameworks and compare the results in terms of accuracy and computational cost. First, we considered the diffusion-advection-reaction equations, which are second-order linear differential equations with two boundary conditions. The first algorithm is the classic Physics-Informed Neural Networks. The second one is Physics-Informed Extreme Learning Machine. The third framework is Deep Theory of Functional Connections, a multilayer neural network based on the solution approximation via a constrained expression that always analytically satisfies the boundary conditions. The last algorithm is the Extreme Theory of Functional Connections (X-TFC), which combines Theory of Functional Connections and shallow neural network with random features [e.g., Extreme Learning Machine (ELM)]. The results show that for these kinds of problems, ELM-based frameworks, especially X-TFC, overcome those using deep neural networks both in terms of accuracy and computational time.