ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
February 2025
Fusion Science and Technology
Latest News
Neutron Vision at Los Alamos: Exploring the Frontiers of Nuclear Materials Science
In materials science, understanding the unseen—how materials behave internally under real-world conditions—has always been key to developing new materials and accelerating innovative technologies to market. Moreover, the tools that allow us to see into this invisible world of materials have often been game-changers. Among these, neutron imaging stands out as a uniquely powerful method for investigating the internal structure and behavior of materials without having to alter or destroy the sample. By harnessing the unique properties of neutrons, researchers can uncover the hidden behavior of materials, providing insights essential for advancing nuclear materials and technologies.
Qingming He, Chao Fang, Liangzhi Cao, Haoyu Zhang
Nuclear Science and Engineering | Volume 197 | Number 3 | March 2023 | Pages 472-484
Technical Note | doi.org/10.1080/00295639.2022.2106733
Articles are hosted by Taylor and Francis Online.
This technical note presents a unified framework of stabilized finite element methods for solving the Boltzmann transport equation. The unified framework is derived from the standard Galerkin weak form with a subgrid scale model, which is different from the traditional Petrov-Galerkin finite element framework that modifies the test function to construct the stabilization term. By this method, first, the unknowns are decomposed into their numerical solutions and residuals. The decomposed unknowns are then embedded into the Galerkin weak form with an approximation for the residual, which yields a stabilized variational formula. Different methods of stabilization are derived from different approximations of the residual. Under this framework, all the frequently used stabilized methods can be obtained, including the streamline upwinding Petrov-Galerkin method, the Galerkin least-squares method, and the algebraic subgrid scale method. Thus, a unified framework of such methods is established. The similarities and differences across the different approximations are also compared in this technical note. The numerical results show that the behaviors of different methods are similar with the same stabilization parameters and that all these stabilized techniques can yield satisfactory and stable solutions.