ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Qingming He, Chao Fang, Liangzhi Cao, Haoyu Zhang
Nuclear Science and Engineering | Volume 197 | Number 3 | March 2023 | Pages 472-484
Technical Note | doi.org/10.1080/00295639.2022.2106733
Articles are hosted by Taylor and Francis Online.
This technical note presents a unified framework of stabilized finite element methods for solving the Boltzmann transport equation. The unified framework is derived from the standard Galerkin weak form with a subgrid scale model, which is different from the traditional Petrov-Galerkin finite element framework that modifies the test function to construct the stabilization term. By this method, first, the unknowns are decomposed into their numerical solutions and residuals. The decomposed unknowns are then embedded into the Galerkin weak form with an approximation for the residual, which yields a stabilized variational formula. Different methods of stabilization are derived from different approximations of the residual. Under this framework, all the frequently used stabilized methods can be obtained, including the streamline upwinding Petrov-Galerkin method, the Galerkin least-squares method, and the algebraic subgrid scale method. Thus, a unified framework of such methods is established. The similarities and differences across the different approximations are also compared in this technical note. The numerical results show that the behaviors of different methods are similar with the same stabilization parameters and that all these stabilized techniques can yield satisfactory and stable solutions.