ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Zhipeng Feng, Fenggang Zang, Shuai Liu, Huanhuan Qi, Xuan Huang
Nuclear Science and Engineering | Volume 197 | Number 3 | March 2023 | Pages 428-442
Technical Paper | doi.org/10.1080/00295639.2022.2118478
Articles are hosted by Taylor and Francis Online.
To further investigate fluid-structure–interaction problems that occur in the nuclear field such as the behavior of pressurized water reactor fuel rods, steam generator tubes, and other heat exchanger tubes, the flow-induced vibrations of two flexible tubes in tandem, side-by-side, and in staggered arrangements are investigated. First, a three-dimensional numerical model for fluid-structure interaction of flexible tubes in cross flow is developed. It is a three-dimensional fully coupled approach with solving the fluid flow and the structure vibration simultaneously. Second, results are presented in the form of force coefficients, dynamic response, trajectories, and wake vortex pattern. The effects of pitch ratio, tube arrangement, and flow velocity on the vibration response and the flow field characteristic are investigated. Critical pitch and critical velocity are obtained successfully. The critical velocity depends heavily on pitch ratio. Under the same pitch ratio and velocity, the side-by-side tubes have the maximum value of fluid force and vibration amplitude, followed by the staggered tubes the and tandem tubes in sequence. The trajectory and wake vortex pattern are highly dependent on tube arrangement, pitch ratio, and flow velocity.