ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
B. R. Betzler, B. J. Ade, P. K. Jain, A. J. Wysocki, P. C. Chesser, W. M. Kirkland, M. S. Cetiner, A. Bergeron, F. Heidet, K. A. Terrani
Nuclear Science and Engineering | Volume 196 | Number 12 | December 2022 | Pages 1399-1424
Technical Paper | doi.org/10.1080/00295639.2021.1996196
Articles are hosted by Taylor and Francis Online.
The Transformational Challenge Reactor is a 3-MW(thermal) helium-cooled experimental nuclear reactor designed using an additive manufacturing–informed agile design process. This design process leverages rapid prototyping and advanced materials from emerging additive manufacturing technologies, key characteristics that enable rapid design maturation. The resulting core design incorporates a blend of advanced reactor technologies into an intermediate-spectrum microreactor, including conventionally manufactured tristructural isotropic (TRISO) fuel particles in an advanced manufactured SiC fuel element and a solid yttrium hydride moderator encapsulated in steel. Matured during the design effort, these technologies are incorporated with additively manufactured steel support and fluidic structures to form a 75-cm-outer-diameter cylindrical active core region. Below and above the active core region are axial SiC reflectors, which are housed inside the reactor pressure vessel. The reactor is controlled with an annular shroud actuated external to the pressure vessel in the gap between the pressure vessel and a steel radial reflector. A safety rod is at the center of the core to shut down the reactor when necessary. Helium pressurized at 5 MPa is forced into the pressure vessel below the core and around the core to the top plenum before it is forced down through the axial reflectors and the active core region. The primary pressurized helium loop is operated up to 500°C and includes the pressure vessel, the circulator, and the hot side of a helium-to-air heat exchanger. The secondary loop rejects all heat from the primary loop to ambient air through a heat exchanger. A vented temporary confinement building contains the entire primary loop, with penetrations for a stack, cooling, and the secondary ambient air loop. This is the first advanced nuclear microreactor designed using additive manufacturing technologies, demonstrating their applicability in an accelerated advanced design process.