ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Growth beyond megawatts
Hash Hashemianpresident@ans.org
When talking about growth in the nuclear sector, there can be a somewhat myopic focus on increasing capacity from year to year. Certainly, we all feel a degree of excitement when new projects are announced, and such announcements are undoubtedly a reflection of growth in the field, but it’s important to keep in mind that growth in nuclear has many metrics and takes many forms.
Nuclear growth—beyond megawatts—also takes the form of increasing international engagement. That engagement looks like newcomer countries building their nuclear sectors for the first time. It also looks like countries with established nuclear sectors deepening their connections and collaborations. This is one of the reasons I have been focused throughout my presidency on bringing more international members and organizations into the fold of the American Nuclear Society.
Yasushi Nauchi, Tetsuo Matsumura
Nuclear Science and Engineering | Volume 196 | Number 11 | November 2022 | Pages 1306-1322
Technical Paper | doi.org/10.1080/00295639.2022.2092355
Articles are hosted by Taylor and Francis Online.
The γ-mode eigenvalue problem is investigated to utilize an exponential experiment to validate nuclear data for reactor core analyses. The perturbation of the spatial decay constant γ by the bias of nuclear data is analyzed with the adjoint flux of the γ-mode eigenvalue problem. The adjoint flux at a phase-space position is found to be proportional to the amplitude of the neutron flux on a plane vertically distant from a source placed at the position. The implication of the adjoint flux is numerically demonstrated based on the diffusion theory. The perturbation theory relating the bias of the fission neutron emission to the perturbation of γ is preliminarily justified in the manner of the continuous energy Monte Carlo.